
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.
Clear["Global`*⋆"]

3.  Use of symmetry. Conclude from the boundary values in example 1 that u21 = u11 and 
u22 = u12. Show that this leads to a system of two equations and solve it.

The conclusion in the problem description is true because of left-right mirroring of bound-
ary values, the only outside influences that can affect the problem. So only two equations 
need to be worked to get the whole layout. Having looked at the text answer, I can see that 
this is handled differently from the explanatory material in the text, so far as I can see. The 
point-centered cross discussed on p. 925 is dispensed with, and the arm leading toward the 
mirrored edge is ignored. With only three directions of influence for each active point, that 
will make the general matrix like


-−3 u11 u12 P01 P10
u11 -−3 u12 P02 P13



And after inserting boundary values


-−3 u11 u12 100 100
u11 -−3 u12 100 0



The augmented section is broken off into a separate vector.

rh =  -−200
-−100



{{-−200}, {-−100}}

And the un-augmented section is filled with coefficients.

aa =  -−3 1
1 -−3



{{-−3, 1}, {1, -−3}}

The system can be solved, although the text answer does not bother with this part.
LinearSolve[aa, rh]


175

2
, 

125

2


And the system of points or nodes on the other side of the mirror line has the same value as 
their analogous points. The slightly mysterious ground covered by this particular problem is 
not generalized nor revisited during the remainder of the section work.

5 - 10 Gauss elimination, Gauss-Seidel iteration
For the grid in the figure below, compute the potential at the four internal points by 
Gauss and by 5 Gauss-Seidel steps with starting values 100, 100, 100, 100 if the bound-
ary values on the edges are:
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5. u(1, 0) = 60, u(2, 0) = 300, u = 100 on the other three edges.

Mathematica can solve this easily if the matrices can be decoded properly. In this problem 
numbered line (11) on p. 926 figures strongly, as well as example 1 on the same page. On 
p. 925 the concept of cardinal directions is discussed, and these figure into the idea of node 
location. The objective will be to integrate the four points (or nodes) P11, P21, P12, and P22, 
in that order, into a systematic grid. The points are connected to each other by edges, but 
they also have cardinal edges which are not attached to any of the other three points, and 
because these are connected to the outer boundary, these peripheral cardinal edges are 
associated with weights, values, charges, or temperatures. Numbered line (11) looks like 
this: ui+1, j + ui, j+1 + ui-−1, j + ui, j-−1 -−4 uij = 0. The i and j in the subscripts relate to the Pij 
mentioned before. I notice that the -−4 term is the only one without plus signs or minus 
signs. These -−4 terms will form the diagonal of the un-augmented matrix, which I can 
already build.
-−4 u11     

 -−4 u21    
  -−4 u12   
   -−4 u22  

The subscripts of the entries in the skeleton matrix define and identify the column sub-
scripts, for the left four columns. According to numbered line (11), each socket in the 
matrix is composed of an equation containing five factors. Referring to the skeleton matrix 
and the node position diagram above, I can fill these in, examining the connecting edges of 
each node to see what may be attached. The right two columns collect external edges, and 
their subscripts are not ordered.
-−4 u11 u21 u12  u10 u01
u11 -−4 u21  u22 u20 u31
u11  -−4 u12 u22 u13 u02
 u21 u12 -−4 u22 u23 u32

;

Now that I have the positions filled in, I can look at the right two columns to see what 
contributions the outside edges are making to each line.
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-−4 u11 u21 u12  60 100
u11 -−4 u21  u22 300 100
u11  -−4 u12 u22 100 100
 u21 u12 -−4 u22 100 100

;

As the right two columns are carried across the equals sign, a sign change takes place, and 
they transform into a vector.

rh =

-−160
-−400
-−200
-−200

;

Looking at the remaining four columns, all I care about now are the coefficients.

aey =

-−4 1 1 0
1 -−4 0 1
1 0 -−4 1
0 1 1 -−4

;

And at this point I am ready to solve the system.
LinearSolve[aey, rh]

{{105}, {155}, {105}, {115}}

7.  U0 on the upper and lower edges, -−U0 on the left and right. Sketch the equipotential 
lines.

For this problem I can skip one step and start with
-−4 u11 u21 u12  u10 u01
u11 -−4 u21  u22 u20 u31
u11  -−4 u12 u22 u13 u02
 u21 u12 -−4 u22 u23 u32

;

Each node has an edge with connects with left or right boundary, and also an edge which 
connects with top or bottom. So I get
-−4 u11 u21 u12  U0 -−U0
u11 -−4 u21  u22 U0 -−U0
u11  -−4 u12 u22 U0 -−U0
 u21 u12 -−4 u22 U0 -−U0

;

rh0 =

0
0
0
0

;

LinearSolve[aey, rh0]

{{0}, {0}, {0}, {0}}

Below is my poor attempt at sketching equipotential lines, or regions.
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9.  u = Sin[ 13π x] on the upper edge, 0 on the other edges.

Once again I can skip one step and start with
-−4 u11 u21 u12  u10 u01
u11 -−4 u21  u22 u20 u31
u11  -−4 u12 u22 u13 u02
 u21 u12 -−4 u22 u23 u32

;

And then fill in the values added by external edges, minding the x value of source.
-−4 u11 u21 u12  0 0
u11 -−4 u21  u22 0 0
u11  -−4 u12 u22 Sin 1

3
π  0

 u21 u12 -−4 u22 Sin 1
3
π 2 0

;

And make the vector on rhs, remembering the sign change.

rh1 =

0
0

-−Sin 1
3
π 1

-−Sin 1
3
π 2

;

LinearSolve[aey, rh1]


3

16
, 

3

16
, 

3 3

16
, 

3 3

16


NumberForm[%, {6, 6}]

{{0.108253}, {0.108253}, {0.324760}, {0.324760}}

The green cell above matches the answer in the text.

11.  Find the potential in the figure below using (a) the coarse grid, (b) the fine grid 5 × 
3, and Gauss elimination. Hint. In (b), use symmetry; take u = 0 as boundary value at 
the two points at which the potential has a jump.
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u = -−110 V

u = -−110 V

u = 110 V

u = 110 V

P11

u = -−110 V

P12
u = 110 V

part (a)

With only two nodes, the system simplifies. Numbered line (11) still holds, even though it 
will be a 4-column matrix with 2 rows, like

 -−4 u11 u12 u01 u10 u21
u11 -−4 u12 u02 u13 u22



And the total matrix will be like

 -−4 u11 u12 -−110 -−110 -−110
u11 -−4 u12 110 110 110



with the right vector equal to
rh4 = {{330}, {-−330}}

{{330}, {-−330}}

and the left matrix equal to
ae4 = {{-−4, 1}, {1, -−4}}

{{-−4, 1}, {1, -−4}}

LinearSolve[ae4, rh4]

{{-−66}, {66}}

part (b) (note: some node identifiers have been left blank to save space)

u = -−110 V

u = -−110 V

u = 110 V

u = 110 V

P11

P13

P14

P15

P31

P32

P33

P34

P35

u = -−110 V
P12

u = 110 V

Okay, in this part the problem description is going to lay down some ground rules. That is, 
the points P13, P23, P33 are going to be taken to equal zero. In other words, the line that 
these three nodes stand on is like a zero boundary edge. Then for example 
P11, P21, P31, P12, P22, P32 will be the system I will look at, the lower node system. And 
because of symmetry, the solution will equal the minus of the upper sextet of points. So I 
can go ahead and use the matrix, modified for 6 × 6.
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Okay, in this part the problem description is going to lay down some ground rules. That is, 
the points P13, P23, P33 are going to be taken to equal zero. In other words, the line that 
these three nodes stand on is like a zero boundary edge. Then for example 
P11, P21, P31, P12, P22, P32 will be the system I will look at, the lower node system. And 
because of symmetry, the solution will equal the minus of the upper sextet of points. So I 
can go ahead and use the matrix, modified for 6 × 6.
-−4 u11 u21  u12   -−110 -−110
u11 -−4 u21 u31  u22  -−110 
 u21 -−4 u31   u32 -−110 -−110
u11   -−4 u12 u22  -−110 0
 u21  u12 -−4 u22 u32 0 
  u31  u22 -−4 u32 0 -−110

Pulling the right two columns across,

rhb =

220
110
220
110
0
110

{{220}, {110}, {220}, {110}, {0}, {110}}

Leaving

ae6 =

-−4 1 0 1 0 0
1 -−4 1 0 1 0
0 1 -−4 0 0 1
1 0 0 -−4 1 0
0 1 0 1 -−4 1
0 0 1 0 1 -−4

{{-−4, 1, 0, 1, 0, 0}, {1, -−4, 1, 0, 1, 0}, {0, 1, -−4, 0, 0, 1},
{1, 0, 0, -−4, 1, 0}, {0, 1, 0, 1, -−4, 1}, {0, 0, 1, 0, 1, -−4}}

Followed by the operation
LinearSolve[ae6, rhb]

-−
14960

161
, -−

14 080

161
, -−

14 960

161
, -−

10340

161
, -−

8690

161
, -−

10340

161


NumberForm[%, {4, 2}]

{{-−92.92}, {-−87.45}, {-−92.92}, {-−64.22}, {-−53.98}, {-−64.22}}

The above cell matches the text answer. To find out the solution value for a specific uxx, 
follow the matrix diagonal down to its position.

13. For the square 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 let the boundary temperatures be 0 ℃ on the 
horizontal and 50 ℃ on the vertical edges. Find the temperatures at the interior points of 
a square grid with h = 1.
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Apparently the requirement that h = 1 means that there will be nine points.
-−4 u11 u21  u12      50 0
u11 -−4 u21 u31  u22     0 
 u21 -−4 u31   u32    50 0
u11   -−4 u12 u22  u13   50 
 u21  u12 -−4 u22 u32  u23   
  u31  u22 -−4 u32   u33 50 
   u12   -−4 u13 u23  0 50
    u22  u13 -−4 u23 u33 0 
     u32  u23 -−4 u33 0 50

;

a911 =

-−4 1 0 1 0 0 0 0 0
1 -−4 1 0 1 0 0 0 0
0 1 -−4 0 0 1 0 0 0
1 0 0 -−4 1 0 1 0 0
0 1 0 1 -−4 1 0 1 0
0 0 1 0 1 -−4 0 0 1
0 0 0 1 0 0 -−4 1 0
0 0 0 0 1 0 1 -−4 1
0 0 0 0 0 1 0 1 -−4

;

r911 =

-−50
0

-−50
-−50
0

-−50
-−50
0

-−50

;

LinearSolve[a911, r911]

{25}, 
75

4
, {25}, 

125

4
, {25}, 

125

4
, {25}, 

75

4
, {25}

N[NumberForm[%, {4, 2}]]

NumberForm::iprf: Formattingspecification {4., 2.} shouldbe a positiveintegeror a pairof positiveintegers. (

{{25.}, {18.75}, {25.}, {31.25}, {25.}, {31.25}, {25.}, {18.75}, {25.}}

The answer in the green cell above matches the answer in the text.

15.  Find the isotherms for the square and grid in problem 13 if u = Sin[ 14π x] on the 
horizontal and -−Sin[ 14π y] on the vertical edges. Try to sketch some isotherms.

The plot that I come up with is somewhat fanciful. I have no guidance on the mode of 
temperature dissipation, and just tried to put something down. The problem description for 
the function for describing the isotherms on the vertical does not seem right, and I dropped 
the sign in order to show an effect from both axes in the same quadrant. Other than that, I 
decided to keep the sine functions the same, although compressing the coefficient might 
have made it look more realistic.
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The plot that I come up with is somewhat fanciful. I have no guidance on the mode of 
temperature dissipation, and just tried to put something down. The problem description for 
the function for describing the isotherms on the vertical does not seem right, and I dropped 
the sign in order to show an effect from both axes in the same quadrant. Other than that, I 
decided to keep the sine functions the same, although compressing the coefficient might 
have made it look more realistic.
N[Log[9]]

2.19722

arc = NTableⅇ-−0.2 x, {x, 1, 15}

{0.818731, 0.67032, 0.548812, 0.449329, 0.367879,
0.301194, 0.246597, 0.201897, 0.165299, 0.135335,
0.110803, 0.090718, 0.0742736, 0.0608101, 0.0497871}

arc1 = N[Table[ⅇx, {x, -−3, 2.2, 0.2}]]

{0.0497871, 0.0608101, 0.0742736, 0.090718, 0.110803, 0.135335,
0.165299, 0.201897, 0.246597, 0.301194, 0.367879, 0.449329,
0.548812, 0.67032, 0.818731, 1., 1.2214, 1.49182, 1.82212, 2.22554,
2.71828, 3.32012, 4.0552, 4.95303, 6.04965, 7.38906, 9.02501}

p1 = PlotTablearc1[[n]] Sin
1

4
π x, {n, 1, 26},

{x, 0, 2 π}, PlotStyle → {Blue, Thickness[0.002]},
ImageSize → 300, AspectRatio → Automatic, Axes → True,
GridLines → Automatic, PlotRange → {{0, 6}, {0, 6}};

p1u = PlotTable-−arc1[[n]] Sin
1

4
π x + 6, {n, 1, 26},

{x, 0, 4}, PlotStyle → {Green, Thickness[0.002]},
ImageSize → 300, AspectRatio → Automatic, Axes → True,
GridLines → Automatic, PlotRange → {{0, 5.5}, {0, 6}};

p2 = PlotTablearc1[[n]] Sin
1

4
π x, {n, 1, 26}, {x, 0, 3},

PlotStyle → {Red, Thickness[0.002]}, ImageSize → 150,
AspectRatio → Automatic, PlotRange → {{0, 3}, {0, 5.5}};

p2u = PlotTablearc1[[n]] Sin
1

4
π (x + 2) + 4, {n, 1, 26}, {x, 3, 6},

PlotStyle → {RGBColor[0.9, 0.9, 0.2], Thickness[0.002]},
ImageSize → 150, AspectRatio → Automatic, PlotRange → {{0, 6}, {0, 6}};

The following axisFlip code was obtained at https://mathematica.stackexchange.com/question-
s/18655/how-can-i-transpose-x-and-y-axis-on-a-plot, from a response by Mr. Wizard.
axisFlip = # /∕. {x_Line x_GraphicsComplex ⧴ MapAt[#~∼Reverse~∼2 &, x, 1],

x : (PlotRange → _) ⧴ x~∼Reverse~∼2} &;

p4 = p2 /∕/∕ axisFlip;
p5 = p2u /∕/∕ axisFlip ;

innerbw = RGBColor[.97, .97, .994];

8     21.4 Methods for Elliptic PDEs 922.nb



p3 = Graphics[{{Opacity[0.3],
RGBColor[0.9, 0.9, 0.9], Rectangle[{-−0.5, -−0.5}, {6.5, 6.5}]},

{EdgeForm[Directive[Black]], innerbw, Disk[{1, 2}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{1, 4}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{3, 2}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{3, 4}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{3, 3}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{1, 3}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{1, 1}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{2, 1}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{2, 2}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{2, 3}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{2, 4}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{2, 5}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{3, 1}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{3, 5}, 0.05]},
{EdgeForm[Directive[Black]], innerbw, Disk[{1, 5}, 0.05]}},

Axes → True, GridLines → Automatic, AspectRatio → Automatic];

Show[p3, p4, p1, p1u, p5]

17.  What p0 in (18) should we choose for problem 16? Apply the ADI formulas (17) with 
that value of p0 to problem 16, performing 1 step. Illustrate the improved convergence by 
comparing with the corresponding values 0.077, 0.308 after the first step in problem 16. 
(Use the starting values zero.)

Numbered line (18) on p. 930 is p0 = 2 Sin[ π
K . After referring to problem 16, I see that 

this problem is actually a revisitation of problem 9, a problem I have already done. Let me 
bring that figure here. The goal of the problem is to compute the potential at the four inter-
nal points. The boundary value for the top edge is Sin[ 13π x], and the other three edges are 
zero. If a starting value is to be used, the text recommends 100 for all four points.
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Numbered line (18) on p. 930 is p0 = 2 Sin[ π
K . After referring to problem 16, I see that 

this problem is actually a revisitation of problem 9, a problem I have already done. Let me 
bring that figure here. The goal of the problem is to compute the potential at the four inter-
nal points. The boundary value for the top edge is Sin[ 13π x], and the other three edges are 
zero. If a starting value is to be used, the text recommends 100 for all four points.

1 2 3
0

1

2

3

0
x

y
P11 P21

P12 P22

First I will write the equation the simple way. Just the Laplace and the boundary conditions.
eqn = D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] ⩵ 0;

bc = u[0, y] ⩵ 0, u[3, y] ⩵ 0, u[x, 0] ⩵ 0, u[x, 3] ⩵ Sin
1

3
π x;

The presence of the enhancers does not really make a difference in the output of 
NDSolveValue, and I could have left them out.
uso = NDSolveValue[{eqn, bc}, u, {x, 0, 3}, {y, 0, 3}, PrecisionGoal → 8,

AccuracyGoal → 8, WorkingPrecision → 10, MaxSteps → ∞]

InterpolatingFunction Domain: {{0., 3.}, {0., 3.}}
Output: scalar



The following table gives the values of the Interpolating function at the nodes of interest.
Table[uso[n, m], {n, 1, 2}, {m, 1, 2}]

{{0.09369, 0.299845}, {0.09369, 0.299845}}

The text answer lists a couple of successive iterations. As shown below, they lie in the neigh-
borhood of the results from NDSolve. Both the NDSolve results and the text answer are 
repetitious, between u21= u21 and u12= u22.
Grid[{{Coarse ADI, "4S"}, {0.0849, 0.3170}, {0.1083, 0.3248}}, Frame → All]

ADI Coarse 4S
0.0849 0.317
0.1083 0.3248

Now I will express the function as a somewhat more involved expression, which, however, 
comes up with the same output values as the simple version above. Somewhere on the web 
I read that Dirichlet conditions are intended to be applied at a point instead of an edge. 
However, it appears that in the following form, the conditions can overcome that limitation.
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soll = NDSolveValueD[u[x, y], x, x] + D[u[x, y], y, y] ⩵ 0,

DirichletConditionu[x, y] ⩵ Sin
π x

3
, y ⩵ 3 && 0 ≤ x ≤ 3,

DirichletCondition[u[x, y] ⩵ 0, y ⩵ 0 && 0 ≤ x ≤ 3],
DirichletCondition[u[x, y] ⩵ 0, x ⩵ 0 && 0 ≤ y ≤ 3],
DirichletCondition[u[x, y] ⩵ 0, x ⩵ 3 && 0 ≤ y ≤ 3], u,

{x, 0, 3}, {y, 0, 3}, PrecisionGoal → 16, AccuracyGoal → 16,
WorkingPrecision → 18, MaxSteps → ∞

InterpolatingFunction Domain: {{0., 3.}, {0., 3.}}
Output: scalar


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